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The coexistence between two stable steady states, referred to as bistability, is generally associated with a
phenomenon of hysteresis in which a system jumps back and forth between the two branches of stable states
for different critical values of some control parameter, corresponding to two limit points. In a previous
publication (Guidi, G.; Goldbeter, A.J. Phys. Chem. A1997, 101, 9367) we focused on the cases where one
of the limit points becomes inaccessible or goes to infinity. Under such conditions it becomes impossible to
achieve the transitions between the two branches of stable steady states as a result of variation of a single
parameter: bistability ceases to be associated with hysteresis. We referred to these two cases as irreversible
transitions of type 1 or type 2, respectively. To study in detail the conditions under which such irreversible
transitions between multiple steady states occur in chemical systems, two models based on fully reversible
chemical steps were considered. The first model, due to Schlo¨gl, was shown to admit irreversible transitions
of type 1 as one of the limit points associated with bistability moves into a physically inaccessible region of
negative values of a control parameter. A second, original model was proposed to illustrate the case of
irreversible transitions of type 2 in which a limit point goes to infinity. Here, by fusing these two models,
we construct a hybrid model to analyze the conditions in which irreversible transitions of types 1 and 2 both
occur as a function of a given control parameter. Then bistability still exists, but the branches of coexisting
steady states cease to be connected so that the transitions between the two stable steady states can no longer
be achieved, regardless of the direction of variation in the control parameter. Such transitions might only
result from a change in some other control parameter or from chemical perturbation.

Introduction

Besides oscillatory behavior, the coexistence between two
stable steady states, referred to as bistability, is one of the most
conspicuous consequences of nonlinearity in chemical kinetics.
The phenomenon is illustrated by a large number of experi-
mental and theoretical studies in chemical1-8 and biochemical9-18

systems. When a parameterλ is continuously increased, it is
often observed (see Figure 1A) that the system jumps from one
branch of stable steady states to another branch at a limit point
associated with a critical valueλ2; when the parameter is then
reduced, the system jumps back to the original branch at a
different limit point associated with a valueλ1 of the control
parameter. Such a phenomenon ofhysteresisis often associated
with bistability.

The association of bistability with hysteresis is, however, by
no means ineluctable. Theoretical studies of biochemical and
combustion systems have shown that one of the limit points
bounding the domain of bistability may not be accessible to
the system.19-27 In such cases (illustrated by panels B and C in
Figure 1), the system can jump from one branch of steady states
to the other but cannot undergo the reverse transition when the
control parameter is varied back and forth across the bistability
domain. Then the transition is said to be irreversible.20 Either
the limit point to the left moves into a region of inaccessible
negative values (Figure 1B) or the limit point to the right goes
to infinity (Figure 1C) and thus becomes an infinite limit point

(ILP). We have referred to these two situations as irreversible
transitions of types 1 and 2, respectively.

If the two limit points are out of the system’s reach, the
branches of coexisting steady states cease to be connected (see
Figure 1D). As a consequence, the system will not be capable
of switching in any direction between these branches upon
continuously varying the control parameter.28,29 Another case
of nonconnected branches is that of isolas (Figure 1F), which
originate from “mushrooms” in which two hysteresis loops are
present (Figure 1E); such isolas are formed when two limit
points (denotedλ2 andλ3 in Figure 1E) coalesce. In this case,
however, in contrast to the situation shown in Figure 1D, the
system can jump irreversibly from the stable branch of the isola
to the other branch of stable steady states. Isolas have been
found both experimentally and theoretically in chemical sys-
tems7,8 and in biochemical models.17

In a previous article30 we investigated the conditions under
which irreversible transitions of type 1 or type 2 occur in
chemical reaction models based on fully reversible steps. Here,
we focus on the occurrence of nonconnected branches of
coexisting steady states in such systems. We shall not consider
here the case of isolas, since irreversible transitions may occur
under such conditions (since one branch of stable steady states
remains connected with the unstable branch). Thus, we shall
restrict our investigation to the case depicted in Figure 1D where
no transition can occur upon varying the control parameter. The
interest of this phenomenon lies in its possible physiological
significance. As a system passes from the situation of hysteresis
(Figure 1A) to a situation of nonconnected branches (Figure

* Corresponding author. Phone: (32-2) 650 5772. Fax: (32-2) 650 5767.
E-mail: agoldbet@ulb.ac.be.

7813J. Phys. Chem. A1998,102,7813-7820

S1089-5639(98)02394-9 CCC: $15.00 © 1998 American Chemical Society
Published on Web 09/15/1998



1D), the irreversible nature of the evolution would be even
stronger than in the cases illustrated in part B or part C of Figure
1, where a transition between the two branches of steady states
can still occur in a single direction. The situation of noncon-
nected branches could lead to the irreversible trapping of the
system on one or the other branch of stable steady states
(depending on the system’s history). In a manner different from
the irreversible transitions of type 1 or type 2, such a situation
could play a role in memory and differentiation.

Theoretical studies of irreversible transitions in bistable
systems have been devoted so far to models governed at least
partly by irreversible kinetic laws.19-27 The case of the loss of
the two limit points has been considered theoretically by
Hervagault and Schellenberger28 and studied experimentally in
a biochemical reaction system.29 To see whether the phenom-
enon can occur in a fully reversible chemical reaction system,
we analyze the conditions under which nonconnected branches
of coexisting steady states occur in a simple theoretical model
based on fully reversible kinetic steps, for which kinetic
equations are derived without resorting to any quasi-steady-
state assumption.

The model proposed for nonconnected branches of coexisting
steady states is of a hybrid nature, since it is obtained by fusing
the two models previously analyzed for irreversible transitions
of type 1 or type 2. Thus, to the model recently constructed to

illustrate the case where one of the limit points goes to infinity,
which corresponds to the irreversible transition of type 2 shown
in Figure 1C, we add a reaction step borrowed from the
bistability model proposed by Schlo¨gl,1 which ensures that the
same system admits an irreversible transition of type 1 depicted
in Figure 1B. In such a way the two branches of stable steady
states admitted by the model cease to be connected with the
unstable branch. The equilibrium state in this model is located
outside the region of bistability. We analyze in detail the
conditions for the occurrence of nonconnected branches of
coexisting steady states and also show that the model may admit
more complex configurations of stable and unstable steady
states, such as a succession of irreversible transitions of type 1
or type 2 as a function of a given control parameter.

Model for Nonconnected Branches of Coexisting Steady
States

Our strategy in constructing a model for nonconnected
branches of coexisting steady states was to use the reversible
chemical model that shows an irreversible transition of type 2
(this irreversible transition thus originates from the shifting of
a limit point to infinity) and to add to this model (referred to as
the infinite limit point or ILP model) a step capable of giving
rise to an irreversible transition of type 1, in which the other
limit point associated with bistability goes into a physically
forbidden region of negative values of the control parameter.

In our previous analysis,30 we had shown that irreversible
transitions of type 1 can occur in the model proposed by Schlo¨gl
for bistability. This model consists of the following steps:1

where the concentrations of reactants A and B are kept constant.
The ILP model considered for irreversible transitions of type 2
consisted of the following steps:30

in which the concentrations of A, B, C, and P are kept con-
stant. We have shown30 that irreversible transitions of type 1
can also occur in this model. We showed, however, that it is
not possible to observe both types of irreversible transitions as
a function of a single control parameter. Finding such a situation
is precisely the purpose of the present paper.

To realize a hybrid model capable of displaying irreversible
transitions of the two types as a function of a single control
parameter, we add the autocatalytic step (reaction 1a) from the
Schlögl model to the ILP model. The full reaction scheme for
the hybrid model, therefore, is

Figure 1. Different modes of bistability (see text). (A) Bistability with
hysteresis. The two limit points are located inλ1, λ2. Panels B-D
illustrate various cases of bistability without hysteresis. (B) Irreversible
transition of type 1, in which the left limit point has moved toward an
inaccessible domain. (C) Irreversible transition of type 2: the right
limit point has moved toward infinity. (D) Nonconnected branches of
steady states where the left limit point has become inaccessible while
the right limit point has gone to infinity. Analyzing the conditions for
the occurrence of such a situation is at the core of the present work.
(E) “Mushroom” with two hysteresis loops, which, upon merging,
produce an isola (F) associated with irreversible transitions. Here, as
in subsequent figures, dashed lines indicate unstable steady states.
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The variables areX andZ; A, B, C, D, andP are concentrations
that are controllable parameters. It should be noted that the
second step of the Schlo¨gl model is also present in the hybrid
model in the form of step 3d, which was also part of the ILP
model. As will become clear later, the strategy followed to
obtain nonconnected branches of coexisting steady states in the
hybrid model requires that step 3e does not involve reactant P,
which is the control parameter as a function of which bistability
will be determined.

The kinetic equations governing the time evolution of
variablesX andZ are

With the scaling,

where all lower case letters denote dimensionless quantities,
and by introduction of the dimensionless parameters,

kinetic eqs 4a and 4b become

As shown in the appendix section, at thermodynamic equi-
librium, the system admits a unique solution.

Irreversible Transitions of Types 1 and 2 and the Origin
of Nonconnected Branches of Coexisting Steady States

Steady-State Equations for the Hybrid Model. At steady
state the following relations hold:

For simplicity we consider, without loss of generality, the case
where all kinetic constants are equal to unity. ThenC1 ) 1,
C2 ) 2, C3 ) 1, C4 ) 1, and the steady-state equations become

It will be convenient to express the last equation in the form of
a functionp(x):

This function will have three vertical asymptotes if its third-
degree denominator has three positive real roots. This will allow
for the occurrence of an irreversible transition of type 2. To
obtain an irreversible transition of type 1, the numerator of this
function must have three positive real roots, since this will
ensure that the limit point that bounds the bistable domain on
the left goes to negative values. Combining the conditions for
an irreversible transition of type 1 with those corresponding to
an irreversible transition of type 2 allows the occurrence of three
nonconnected branches of steady states.

From Bistability with Hysteresis to Nonconnected Branches
of Steady States. We first wish to show how the situation of
nonconnected branches of steady states arises in the hybrid
model, starting from a situation where bistability is accompanied
by full hysteresis. In Figure 2, the top panels correspond to
such a situation. The left panel shows the loci of the limit points
LP1 and LP2 in thep-c parameter plane. These loci are
determined by imposing the mathematical conditions onp and
c for which the third-degree polynomial (eq 8) inx admits three
real, positive roots. In the region between the two loci, three
steady states occur, two of which are stable. The dashed
horizontal line in thep-c plane illustrates the behavior, shown
in the right panel, at a fixed value ofb ) 0.045 and ofc )
0.198, as a function ofp. The fact that the horizontal line
intersects with the loci of LP1 and LP2 means that the two limit
points exist for this value ofc so that a full hysteresis is then
observed as a function ofp.

In the middle panels, obtained for the same value ofb but
for c ) 0.129, the horizontal line in thep-c parameter plane
intersects only with the locus of LP2. As shown in the
corresponding right panel, the disappearance of LP1 is associated
with a situation that allows an irreversible transition of type 1.
If the value ofb is then changed to 0.08, without changing the
value ofc (this change inb affects the position of the loci of
LP1 and LP2), the horizontal line does not intersect anymore
with either the locus of LP1 or with that of LP2 (lower left
panel). This situation introduces an irreversible transition of
type 2, in addition to the transition of type 1 noted in the
previous case, so that the two branches of stable steady states
are not connected anymore with the unstable branch (lower right
panel).
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Detailed Analysis of the Conditions Leading to Noncon-
nected Branches of Coexisting Steady States. To explore in
more detail the occurrence of three nonconnected branches of
coexisting steady states, it is useful to carry a comparative
analysis of the conditions in which irreversible transitions of
type 1 type or 2 arise in this hybrid model. The condition for
an irreversible transition of type 2 is that the denominator of
function p(x) given by eq 8 admits three real, positive roots.
This will occur in the hatched area of the diagram established
in Figure 3A as a function of parametersa andb. This diagram
is identical to that established for the infinite limit point (ILP)
model studied in our previous publication. Similarly, the
condition for an irreversible transition of type 1 is that the
numerator of functionp(x) given by eq 8 admits three real,
positive roots. This will occur in the hatched area of the diagram
established in Figure 3B as a function of parametersc andd.
The latter diagram is the same as the diagram previously
established for the existence of three real solutions in the Schlo¨gl
model.

As will be illustrated below by specific examples, if the values
of a andb correspond to a point of the hatched domain in Figure
3A while the values ofc and d correspond to a point of the
hatched domain in Figure 3B, we will observe either noncon-
nected branches of steady states or more complex situations

involving multiple irreversible transitions. Ifa and b belong
to the hatched domain in Figure 3A whilec andd lie outside
the hatched domain in Figure 3B, an irreversible transition of
type 2 will occur. Ifa andb lie outside the hatched domain in
Figure 3A whilec andd correspond to a point in the hatched
domain in Figure 3B, an irreversible transition of type 1 will
occur. If both pairs (a, b) and (c, d) correspond to points outside
the hatched domains in Figure 3A,B, either bistability with
hysteresis or monostability will be encountered.

To discuss the behavior of the model as a function of only
two control parameters (say,b andc, as previously considered
in Figure 2), let us fix the values ofa and d as in Figure 2.
These values ofa and d allow b and c to take values corre-
sponding to points located in the hatched areas in Figure 3A,B
(see the dashed lines in the two panels of Figure 3). Shown in
Figure 4 are the different domains encountered in theb-c
parameter plane for these values ofa and d. The domain of
nonconnected branches corresponds to the central, rectangular
region of this diagram in which the values of bothb andc are
such that the two pairs (a, b) and (c, d) correspond to points
inside the hatched domains in Figure 3A,B. The other domains
around this central region correspond to regions in which
irreversible transitions of type 1 or type 2 occur, to regions of
monostability, or to bistability associated with hysteresis.

Figure 2. From bistability with hysteresis (upper panels) to nonconnected branches of coexisting steady states (lower panels) via an irreversible
transition of type 1 (middle panels). Left columns show the loci of limit points LP1 and LP2. These limit points bound the domain of bistability
(hatched area) in which eq 9 admits three steady-state solutions, two of which are stable and the third one unstable. The transition from top to
bottom is obtained by first lowering the value ofc at constantb and then by increasingb at constantc (this path is marked by the two arrows in
the diagram of Figure 4). The values ofb andc are indicated in each panel. The dashed horizontal lines in the left panels refer to the values ofc
considered in the corresponding right panels. The limit point LP1 (LP2) exists only if the horizontal line intersects with the LP1 (LP2) locus. Thus,
LP1 and LP2 both exist in the right upper panel; only LP2 exists in the middle right panel, whereas neither LP1 nor LP2 exist in the lower right
panel. Other parameter values area ) 1.9, d ) 1.9801.
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The horizontal and vertical arrows in the right part of Figure
4 correspond to the path followed in Figure 2 for switching
successively from bistability with hysteresis to an irreversible
transition of type 1 (upon decreasingc) and then to the situation
of nonconnected branches of steady states (upon increasingb).

It is possible to understand in further detail the transitions
sketched in the diagram of Figure 4 by plotting the roots of the
numerator and denominator of functionp(x) as a function ofc
andb, respectively. This is done in Figure 5, wherea andd
have been fixed at the values considered in Figures 2 and 4. As
can be expected from the above discussion, both the numerator
and the denominator ofp(x) can display one or three roots as
parametersc or b vary. The type of pattern of steady states
observed forx as a function of parameterp will depend not
only on the number of roots admitted by the numerator and
denominator ofp(x) but also on the relative positions of these
roots.

To allow the occurrence of nonconnected branches, consider
the case illustrated in Figure 5 in which we fixc at the value
0.08 (this value corresponds to the dashed vertical line in Figure
4). The three roots of the numerator ofp(x) corresponding to
this value ofc are marked by black dots in Figure 5. We then
progressively increase parameterb from a low initial value. The

increasing values ofb correspond to the vertical dashed lines
in Figure 5. The intersections of these lines with the S-shaped
curve yielding the roots of the denominator ofp(x) as a function
of b yield the position of the asymptotes ofx as a function of
p.

The different patterns obtained in this case are shown in
Figure 6 where the steady-state value ofx is plotted as a function
of p for the three values of parameterb considered in Figure 5.
We start with an irreversible transition of type 1, with the lower
branch of stable steady states approaching the unique asymptote.
At the largest value ofb, we still observe an irreversible
transition of type 1, but now it is the upper branch of stable
steady states that approaches the unique asymptote. Between

Figure 3. Domains (hatched areas) in which (A) the denominator or
(B) the numerator of functionp(x) defined by eq 10 admits three real,
positive roots. When the denominator admits three such roots (upper
panel), the curve yielding the steady statexs as a function ofp will
admit three distinct horizontal asymptotes. This situation corresponds
to an irreversible transition of type 2 and is also a necessary but not
sufficient condition to observe nonconnected branches of coexisting
steady states. When the numerator admits three real positive roots for
p ) 0 (lower panel), the system admits three distinct steady statesxs

in p ) 0. This condition corresponds to an irreversible transition of
type 1 and is also a necessary but not sufficient condition to observe
nonconnected branches of coexisting steady states. The situation of
nonconnected branches of coexisting steady states occurs when the pairs
of values (a, b) and (c, d) correspond to points located in the hatched
domains of panels A and B, respectively (see also Figure 4). The dashed
lines in panels A and B refer to the values ofa andd considered in
Figure 4.

Figure 4. Diagram showing the domain of nonconnected branches of
coexisting steady states as a function of parametersb and c. Also
indicated are the domains of monostability (M), bistability with
hysteresis (H), and bistability with an irreversible transition of type 1
(IT1) or type 2 (IT2). The diagram is established fora ) 1.9, d )
1.9801. As indicated by the dashed lines in Figure 3, these values allow
the multiplicity of roots of the numerator and denominator of function
p(x). The two arrows in the diagram refer to the path followed in Figure
2 to illustrate the transition from bistability with hysteresis to the
situation of nonconnected branches of coexisting steady states. The
vertical dashed line refers to the value ofc considered in Figure 6 below
(the three roots of the numerator ofp(x) marked by black dots in Figure
5 are also obtained for this particular value ofc).

Figure 5. Roots of the denominator (solid curve) and of the numerator
(dotted curve) ofp(x) as a function of parametersb andc, respectively.
In the hatched area, the denominator admits three real positive roots.
For the value ofc ) 0.08 considered, the numerator also possesses
three such roots, which are marked by black dots. To observe
nonconnected branches of coexisting steady states, the value ofb must
be in the range corresponding to the hatched domain. The vertical
dashed lines relate to the three values ofb considered in Figure 6.
Parametersa andd are as in Figure 4.
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these two extreme cases, we observe nonconnected branches.
The relative positions of the three branches of stable (or
unstable) steady states with respect to their associated asymp-
totes depend on the value ofb.

Complex Patterns of Bistability. The possibility of observ-
ing more complex patterns of transitions between multiple stable
steady states is illustrated by the diagram of Figure 7 established
as a function of parametersb andc for the same value ofa as
in Figure 4 but for the higher valued ) 4.19. The diagram
shows the same regions as in Figure 4, but besides the region
of nonconnected branches, we observe a domain of complex
configurations of steady states. The latter configurations are
illustrated in Figure 8 where different patterns observed are
shown. The origin of such complex patterns of multiple steady
states can be understood by resorting to a graphical representa-
tion of the roots of the numerator and denominator ofp(x), as

done in Figure 5 for the patterns of Figure 6. Of particular
interest is the pattern shown in panel C of Figure 8, where an
irreversible transition of type 1 is followed by bistability with
hysteresis and by an irreversible transition of type 2 as the
parameterp increases.

Discussion

Bistability denotes the coexistence of two stable steady states
in a reaction system subjected to the same experimental
conditions. The phenomenon is commonly associated with the
capability of the system to switch back and forth between the
two distinct branches of stable steady states (connected by a
branch of unstable steady states) upon the reversible variation
of a control parameter in a range bounded by two limit points.
A phenomenon of hysteresis results from the fact that the values
of the control parameter at which the transitions occur, which
correspond to the two limit points, are generally different.

In a previous publication30 we focused on the situations in
which one of the limit points becomes inaccessible to the system.
In such cases, the system is capable of jumping from one branch
of steady states to the other without being able to undergo the
reverse transition; the transition between the two branches of
stable steady states has become irreversible.20 Here, we extended
this analysis by proposing a model for the case where the two
limit points bounding the domain of bistability have both
become inaccessible. Under such conditions, the three branches
(two stable and one unstable) of steady states cease to be
connected so that no transition between the stable branches can
occur upon continuously varying the control parameter. Bi-
stability still exists, but the system may remain irreversibly
trapped in any one of the two stable states if only the selected
control parameter can change. Even when the branches of
steady states are not connected, however, the transitions between
the stable steady states can still be achieved by applying
suprathreshold perturbations in the concentrations of chemical
intermediates.

Several models showing irreversible transitions between two
stable steady states have been proposed,19-26 but the kinetics
of these systems is of a nonpolynomial nature and is based on
the assumption of irreversible chemical steps. To clarify the

Figure 6. Passage through the domain of nonconnected branches of
coexisting steady states, starting from and returning to bistability with
irreversible transition of type 1. The path followed corresponds to an
increase in parameterb along the vertical dashed line shown in Figure
4. Thus,b ) 0.02 for (A), 0.09 for (B), and 0.15 for (C). These values
correspond to the three vertical dashed lines in Figure 5, which permits
us to determine the locations of the horizontal asymptote(s) with respect
to the steady statesxs in p ) 0 (black dots). Parametersa andd are as
in Figure 4.

Figure 7. Diagram showing the domains of nonconnected branches
of coexisting steady states and of more complex patterns of bistability
(shown in Figure 8) as a function of parametersb andc. The diagram
is established ford ) 4.19. The value ofa is as in Figure 4. The
occurrence of complex patterns of bistability associated with the
existence of two or more limit points (see Figure 8) is determined, as
for hysteresis, by finding the domain wherep(x) admits multiple positive
extrema. The vertical dashed line refers to the value ofc considered in
panel A of Figure 8.
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conditions under which irreversible transitions occur when one
of the limit points of a bistable chemical system disappears,
we examined in our previous publication30 two theoretical
models admitting a coexistence between two stable steady states.
The two models, described by polynomial kinetics, are based
on a sequence of reversible chemical reactions. This analysis
led us to suggest a classification of irreversible transitions
between two types, 1 and 2 (see Introduction). In the first
model, proposed by Schlo¨gl,1 we showed that irreversible
transitions of type 1 but not of type 2 are possible. In the second
model, constructed to illustrate the phenomenon and referred
to as the ILP (infinite limit point) model,30 irreversible transitions
of type 2 (but also of type 1 upon varying another parameter)
are obtained.

In the present study devoted to the case of nonconnected
branches of steady states, we aimed at combining the occurrence

of irreversible transitions of types 1 and 2 as a function of a
single parameter. To this end, we constructed a hybrid, two-
variable model by fusing the ILP model with the Schlo¨gl model
previously studied for bistability associated with hysteresis.
Besides nonconnected branches of steady states, this model can
display a wide variety of steady-state behavior, including
monostability, bistability with hysteresis, and irreversible transi-
tions of type 1 or type 2. More complex configurations
involving a succession of irreversible transitions as a control
parameter is varied can also be observed in this model.

We have analyzed the conditions under which the situation
of nonconnected branches of steady states arises in this model
as a function of one of the main control parameters. Our study
establishes that this phenomenon can occur in fully reversible
chemical reaction systems and is therefore not an artifact due
to the irreversible nature of the kinetic scheme considered.
Thermodynamic equilibrium corresponds to a point located
outside the domain of bistability. Thus, much as irreversible
transitions, the phenomenon of nonconnected branches is
possible in fully reversible chemical systems under nonequi-
librium conditions.

Bistability phenomena are by now a well-known manifesta-
tion of nonlinear kinetics in chemical systems. Hysteresis
behavior associated with bistability has been described in a
number of theoretical or experimental studies, both in chemical1-8

and biochemical9-18 systems. Less attention has been devoted
to the occurrence of irreversible transitions resulting in bistability
without hysteresis. The phenomenon has been studied in detail
by Gray et al.26 in combustion systems and by Hervagault et
al.24,25,27who focused on cyclical enzymatic systems governed
by (partially) irreversible kinetic laws and who investigated
experimentally the disappearance of limit points in such bistable
systems. With the exception of studies devoted to a cyclical
enzymatic system subjected to feedback regulation,28,29 even
less attention has been paid so far to the situation of noncon-
nected branches of steady states. Further experimental studies
of bistability with irreversible transitions or nonconnected
branches are clearly needed in chemical and biochemical
systems to better characterize the phenomenon and the condi-
tions under which it occurs.

Bistability without hysteresis could be of deep physiological
significance for the dynamics of biological systems, particularly
with respect to memory and differentiation. Once a system has
reached a certain steady state as a result of a change in a given
control parameter, it remains trapped in this state regardless of
any further change in the parameter value. Such irreversible
transitions between multiple steady states have been found in a
model for the Ca2+-induced self-activation of calmodulin kinase
through autophosphorylation,22 as well as in a model for the
immune response.23 In the latter case, the authors thus could
describe the system’s evolution toward a “paralyzed” state. The
situation of bistability with nonconnected branches of steady
states might be of further interest, since it allows a system to
be trapped in any of two possible steady states and not just one
of these states as in the case of irreversible transitions of type
1 or type 2.

The finding that bistability without hysteresis arises in
models18,22,24,25,31and experiments27-29 involving cyclical en-
zymatic systems suggests that a large class of biochemical
processes might in principle give rise to the phenomenon. Many
key cellular processes are indeed regulated by the reversible
covalent modification of proteins, e.g., phosphorylation by a
protein kinase and dephosphorylation by a phosphatase. Bi-
stability may readily occur in such cyclical enzymatic systems

Figure 8. Various types of complex patterns of bistability obtained in
the model. In (A) and (B), an irreversible transition of type 1 is followed
by an irreversible transition of type 2 as parameterp increases. In (C),
a full hysteresis loop separates two irreversible transitions of types 1
and 2, respectively. For (A), parametersa andd are as in Figure 7;b
) 0.102, c ) 0.055. Although (A) and all previous figures were
obtained forC4 ) 1 in eq 7, this parameter is equal to 0.0263 in (B)
and 0.2693 in (C). Other parameter values are the following: (B)a )
1.9,b ) 0.08,c ) 0.789,d ) 0.355; (C)a ) 1.9,b ) 0.1,c ) 0.265,
d ) 0.973.
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when one of the modifying enzymes is controlled by positive
or negative feedback. The possibility therefore exists that
irreversible transitions between multiple steady states, as well
as nonconnected branches of coexisting steady states, could play
a role in a variety of cellular regulatory processes.
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Appendix: Unicity of the Equilibrium State for the
Scheme Depicted by Reactions 3a-3e

At equilibrium we have

With the definitions given in eqs 5 and 6, the equilibrium
conditions take the form

Substituting the values of the concentrations at equilibrium as
given by eq A2 in the steady-state equations (eq 8), we obtain
the eq A3:

It is evident that the second factor cannot have real positive

solutions. Thus, at equilibrium we have only the single
equilibrium solution.
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