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The coexistence between two stable steady states, referred to as bistability, is generally associated with a
phenomenon of hysteresis in which a system jumps back and forth between the two branches of stable states
for different critical values of some control parameter, corresponding to two limit points. In a previous
publication (Guidi, G.; Goldbeter, Al. Phys. Chem. A997, 101, 9367) we focused on the cases where one

of the limit points becomes inaccessible or goes to infinity. Under such conditions it becomes impossible to
achieve the transitions between the two branches of stable steady states as a result of variation of a single
parameter: bistability ceases to be associated with hysteresis. We referred to these two cases as irreversible
transitions of type 1 or type 2, respectively. To study in detail the conditions under which such irreversible
transitions between multiple steady states occur in chemical systems, two models based on fully reversible
chemical steps were considered. The first model, due to'§khias shown to admit irreversible transitions

of type 1 as one of the limit points associated with bistability moves into a physically inaccessible region of
negative values of a control parameter. A second, original model was proposed to illustrate the case of
irreversible transitions of type 2 in which a limit point goes to infinity. Here, by fusing these two models,

we construct a hybrid model to analyze the conditions in which irreversible transitions of types 1 and 2 both
occur as a function of a given control parameter. Then bistability still exists, but the branches of coexisting
steady states cease to be connected so that the transitions between the two stable steady states can no longer
be achieved, regardless of the direction of variation in the control parameter. Such transitions might only
result from a change in some other control parameter or from chemical perturbation.

Introduction (ILP). We have referred to these two situations as irreversible
transitions of types 1 and 2, respectively.

If the two limit points are out of the system’s reach, the
anches of coexisting steady states cease to be connected (see
Figure 1D). As a consequence, the system will not be capable
of switching in any direction between these branches upon

i i 9
systems. When a parameteis continuously increased, it is continuously varying the control parameté?® Another case

often observed (see Figure 1A) that the system jumps from Oneof_n_onconnected branches i_s that_ of isolas (Figurfe 1F), which
branch of stable steady states to another branch at a limit point®"ginate from “mushrooms” in which two hysteresis loops are

associated with a critical valul; when the parameter is then prgsent (Figure 1E); su_ch _isolas are formed when _tWO limit
reduced, the system jumps back to the original branch at g Points (denoted. and4s in Figure 1E) coalesce. In this case,

different limit point associated with a valug of the control however, in contrast to the situation shown in Figure 1D, the

parameter. Such a phenomenorgsteresiss often associated system can jump irreversibly from the stable branch of the isola
with bistability. to the other branch of stable steady states. Isolas have been

The association of bistability with hysteresis is, however, by found both experimentally and theoretically in chemical sys-

no means ineluctable. Theoretical studies of biochemical andtemg'8 and .|n blochemlcal WOng' N
combustion systems have shown that one of the limit points !N @ previous artic we investigated the conditions under
bounding the domain of bistability may not be accessible to Which irreversible transitions of type 1 or type 2 occur in
the systent®27 In such cases (illustrated by panels B and C in chemical reaction models based on fully reversible steps. Here,
Figure 1), the system can jump from one branch of steady statesve focus on the occurrence of nonconnected branches of
to the other but cannot undergo the reverse transition when thecoexisting steady states in such systems. We shall not consider
control parameter is varied back and forth across the bistability here the case of isolas, since irreversible transitions may occur
domain. Then the transition is said to be irrevers®IEither under such conditions (since one branch of stable steady states
the limit point to the left moves into a region of inaccessible remains connected with the unstable branch). Thus, we shall
negative values (Figure 1B) or the limit point to the right goes restrict our investigation to the case depicted in Figure 1D where
to infinity (Figure 1C) and thus becomes an infinite limit point no transition can occur upon varying the control parameter. The
interest of this phenomenon lies in its possible physiological
* Corresponding author. Phone: (32-2) 650 5772. Fax: (32-2) 650 5767. Significance. As a system passes from the situation of hysteresis
E-mail: agoldbet@ulb.ac.be. (Figure 1A) to a situation of nonconnected branches (Figure

Besides oscillatory behavior, the coexistence between two
stable steady states, referred to as bistability, is one of the mostbr
conspicuous consequences of nonlinearity in chemical kinetics.
The phenomenon is illustrated by a large number of experi-
mental and theoretical studies in chemficadband biochemicéi18
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illustrate the case where one of the limit points goes to infinity,

- B//.— which corresponds to the irreversible transition of type 2 shown
/ : in Figure 1C, we add a reaction step borrowed from the
A

A

o el A bistability model proposed by Schyb! which ensures that the
ol I Tt S same system admits an irreversible transition of type 1 depicted
‘# 5 in Figure 1B. In such a way the two branches of stable steady
__/ _/ states admitted by the model cease to be connected with the
Hysteresis IT unstable branch. The equilibrium state in this model is located
£ A2 % outside the region of bistability. We analyze in detail the

conditions for the occurrence of nonconnected branches of
c D//— coexisting steady states and also show that the model may admit
/— more complex configurations of stable and unstable steady

states, such as a succession of irreversible transitions of type 1

--------------------------- or type 2 as a function of a given control parameter.
///rrz_ m Model for Nonconnected Branches of Coexisting Steady

st

Xs

branches States
Al
E F Our strategy in constructing a model for nonconnected
i /‘\ branches of coexisting steady states was to use the reversible
m ( ) chemical model that shows an irreversible transition of type 2
el el (this irreversible transition thus originates from the shifting of
v o) »l/ \L \L a limit point to infinity) and to add to this model (referred to as
_M k ] the infinite limit point or ILP model) a step capable of giving
Mushroom Isola rise to an irreversible transition of type 1, in which the other
limit point associated with bistability goes into a physically
MooA M M M A forbidden region of negative values of the control parameter.
Figure 1. Different modes of bistability (see text). (A) Bistability with In our previous analysi® we had shown that irreversible
hysteresis. The two limit points are located i A.. Panels B-D transitions of type 1 can occur in the model proposed by §thlo

illustrate various cases of bistability without hysteresis. (B) Irreversible for bistability. This model consists of the following steps:

transition of type 1, in which the left limit point has moved toward an

inaccessible domain. (C) Irreversible transition of type 2: the right K

limit point has moved toward infinity. (D) Nonconnected branches of A + 2X=3X (1a)

steady states where the left limit point has become inaccessible while !

the right limit point has gone to infinity. Analyzing the conditions for

the occurrence of such a situation is at the core of the present work. X g B (1b)

(E) “Mushroom” with two hysteresis loops, which, upon merging, k-2

produce an isola (F) associated with irreversible transitions. Here, as

in subsequent figures, dashed lines indicate unstable steady states. \yhere the concentrations of reactants A and B are kept constant.
The ILP model considered for irreversible transitions of type 2

1D), the irreversible nature of the evolution would be even consisted of the following steps:

stronger than in the cases illustrated in part B or part C of Figure K
1, where a transition between the two branches of steady states P+X==7 (2a)
can still occur in a single direction. The situation of noncon- ks
nected branches could lead to the irreversible trapping of the v
system on one or the other branch of stable steady states 7—==P+B (2b)
(depending on the system'’s history). In a manner different from k2
the irreversible transitions of type 1 or type 2, such a situation )
could play a role in memory and differentiation. N
Theoretical studies of irreversible transitions in bistable ZHA+X = Z+2X (2c)
systems have been devoted so far to models governed at least
partly by irreversible kinetic law¥~27 The case of the loss of K (2d)

=

the two limit points has been considered theoretically by K 4

Hervagault and Schellenberg®and studied experimentally in

a biochemical reaction systethTo see whether the phenom- in which the concentrations of A, B, C, and P are kept con-

enon can occur in a fully reversible chemical reaction system, stant. We have showhthat irreversible transitions of type 1

we analyze the conditions under which nonconnected branchescan also occur in this model. We showed, however, that it is

of coexisting steady states occur in a simple theoretical model not possible to observe both types of irreversible transitions as

based on fully reversible kinetic steps, for which kinetic a function of a single control parameter. Finding such a situation

equations are derived without resorting to any quasi-steady- is precisely the purpose of the present paper.

state assumption. To realize a hybrid model capable of displaying irreversible
The model proposed for nonconnected branches of coexistingtransitions of the two types as a function of a single control

steady states is of a hybrid nature, since it is obtained by fusing parameter, we add the autocatalytic step (reaction 1a) from the

the two models previously analyzed for irreversible transitions Schltl model to the ILP model. The full reaction scheme for

of type 1 or type 2. Thus, to the model recently constructed to the hybrid model, therefore, is
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S, p(x + b)
P+ X 'y 4 (3a) 7= o
2
k,
Z==P+B (3b) 3 Clpb—pa—Cde2 pC, -1+ C,—pab
CC,+Cp C.C,+Cp
K
Z+A+X==2Z+2X (3c) cC,+pb ~0 @)
’ C,C,+Cp
K
X == C (3d) For simplicity we consider, without loss of generality, the case
s where all kinetic constants are equal to unity. Th&an= 1,
K C,=2,C3=1,C,=1, and the steady-state equations become
D + 2X==3X
oS (3e) p(x+ b)
z= —%
The variables ar& andz; A, B, C, D, andP are concentrations
that are controllable parameters. It should be noted that the 1 pb— pa— 2dX2 4P +2- pabX _2c+tpb_ 0

second step of the Sclgbmodel is also present in the hybrid 2+p 2+p 2+p
model in the form of step 3d, which was also part of the ILP

model. As will become clear later, the strategy followed to It will be convenient to express the last equation in the form of

obtain nonconnected branches of coexisting steady states in thé functionp(x):

hybrid model requires that step 3e does not involve reactant P, 208 — ¥+ x — ©)

which is the control parameter as a function of which bistability p= (10)
will be determined. - +@-by—(1—abx+b

The kinetic equations governing the time evolution of

variablesX andZ are This function will have three vertical asymptotes if its third-

degree denominator has three positive real roots. This will allow
for the occurrence of an irreversible transition of type 2. To
= —kXP+ k_;Z + kZAX— k_3x22 — kX+k_,C+ obtain an irreversible transition of type 1, the numerator of this
function must have three positive real roots, since this will
ksDX? — k_X3 (4a) ensure that the limit point that bounds the bistable domain on
the left goes to negative values. Combining the conditions for
dz _ XP— (k_, + k)Z + k_,PB (4b) an _irrevers_ible trans_,ifcion of type 1 with those corresponding to
dt an irreversible transition of type 2 allows the occurrence of three
nonconnected branches of steady states.
With the scaling, From Bistability with Hysteresis to Nonconnected Branches
of Steady States We first wish to show how the situation of
K, k42 kok_y K, nonconnected branches of steady states arises in the hybrid
X= k—x; Z= WZ; A= K a, B=—Ub; model, starting from a situation where bistability is accompanied
1 11 3™ by full hysteresis. In Figure 2, the top panels correspond to
K k, 4 1 such a situation. The left panel shows the loci of the limit points
C=rx & b =k—5di P=1p t=70) LP1 and LP2 in thep—c parameter plane. These loci are
174 1 4 determined by imposing the mathematical conditionp@md
c for which the third-degree polynomial (eq 8)xradmits three
'real, positive roots. In the region between the two loci, three
steady states occur, two of which are stable. The dashed
horizontal line in thgg—c plane illustrates the behavior, shown

dX
dt

where all lower case letters denote dimensionless quantities
and by introduction of the dimensionless parameters,

kR ko Ky ke, in the right panel, at a fixed value &f = 0.045 and ofc =
C, = K2 C= [1 1 G= E’ C= F (6) 0.198, as a function op. The fact that the horizontal line
1ot ! intersects with the loci of LP1 and LP2 means that the two limit
o points exist for this value of so that a full hysteresis is then
kinetic egs 4a and 4b become observed as a function gf
In the middle panels, obtained for the same valud @it
dx_ —xp+ z+ zax— Cpéz— x+ c+ d¥ — C,° for ¢ = 0.129, the horizontal line in the—c parameter plane
dr intersects only with the locus of LP2. As shown in the
dz corresponding right panel, the disappearance of LP1 is associated
p Cy(xp— C,z+ pb) @) with a situation that allows an irreversible transition of type 1.

If the value ofb is then changed to 0.08, without changing the
) . ) ) . value ofc (this change irb affects the position of the loci of
_As shown in the appendix section, at thermodynamic equi- | py ang LP2), the horizontal line does not intersect anymore
librium, the system admits a unique solution. with either the locus of LP1 or with that of LP2 (lower left
panel). This situation introduces an irreversible transition of
type 2, in addition to the transition of type 1 noted in the
previous case, so that the two branches of stable steady states
Steady-State Equations for the Hybrid Model. At steady are not connected anymore with the unstable branch (lower right
state the following relations hold: panel).

Irreversible Transitions of Types 1 and 2 and the Origin
of Nonconnected Branches of Coexisting Steady States
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Figure 2. From bistability with hysteresis (upper panels) to nonconnected branches of coexisting steady states (lower panels) via an irreversible
transition of type 1 (middle panels). Left columns show the loci of limit points LP1 and LP2. These limit points bound the domain of bistability
(hatched area) in which eq 9 admits three steady-state solutions, two of which are stable and the third one unstable. The transition from top to
bottom is obtained by first lowering the value ofit constanb and then by increasinig at constant (this path is marked by the two arrows in

the diagram of Figure 4). The values lofandc are indicated in each panel. The dashed horizontal lines in the left panels refer to the values of
considered in the corresponding right panels. The limit point LP1 (LP2) exists only if the horizontal line intersects with the LP1 (LP2) locus. Thus,
LP1 and LP2 both exist in the right upper panel; only LP2 exists in the middle right panel, whereas neither LP1 nor LP2 exist in the lower right
panel. Other parameter values are= 1.9,d = 1.9801.

Detailed Analysis of the Conditions Leading to Noncon- involving multiple irreversible transitions. K andb belong
nected Branches of Coexisting Steady StatesTo explore in to the hatched domain in Figure 3A whiteandd lie outside
more detail the occurrence of three nonconnected branches othe hatched domain in Figure 3B, an irreversible transition of
coexisting steady states, it is useful to carry a comparative type 2 will occur. Ifa andb lie outside the hatched domain in
analysis of the conditions in which irreversible transitions of Figure 3A whilec andd correspond to a point in the hatched
type 1 type or 2 arise in this hybrid model. The condition for domain in Figure 3B, an irreversible transition of type 1 will
an irreversible transition of type 2 is that the denominator of occur. If both pairsg, b) and ¢, d) correspond to points outside
function p(x) given by eq 8 admits three real, positive roots. the hatched domains in Figure 3A,B, either bistability with
This will occur in the hatched area of the diagram established hysteresis or monostability will be encountered.
in Figure 3A as a function of parameterandb. This diagram To discuss the behavior of the model as a function of only
is identical to that established for the infinite limit point (ILP) two control parameters (saly,andc, as previously considered
model studied in our previous publication. Similarly, the in Figure 2), let us fix the values af andd as in Figure 2.
condition for an irreversible transition of type 1 is that the These values o& andd allow b andc to take values corre-
numerator of functiorp(x) given by eq 8 admits three real, sponding to points located in the hatched areas in Figure 3A,B
positive roots. This will occur in the hatched area of the diagram (see the dashed lines in the two panels of Figure 3). Shown in
established in Figure 3B as a function of parameteandd. Figure 4 are the different domains encountered in bhe
The latter diagram is the same as the diagram previously parameter plane for these valuesasofndd. The domain of
established for the existence of three real solutions in the'@chlo  nonconnected branches corresponds to the central, rectangular
model. region of this diagram in which the values of bditandc are

As will be illustrated below by specific examples, if the values such that the two pairsa( b) and ¢, d) correspond to points
of aandb correspond to a point of the hatched domain in Figure inside the hatched domains in Figure 3A,B. The other domains
3A while the values ot andd correspond to a point of the around this central region correspond to regions in which
hatched domain in Figure 3B, we will observe either noncon- irreversible transitions of type 1 or type 2 occur, to regions of
nected branches of steady states or more complex situationgnonostability, or to bistability associated with hysteresis.
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| B ¢
|
015l 1 Figure 4. Diagram showing the domain of nonconnected branches of
’ One steady state coexisting steady states as a function of parameieasnd c. Also
at p=0 indicated are the domains of monostability (M), bistability with
o 0.1} ] hysteresis (H), and bistability with an irreversible transition of type 1
’ (IT1) or type 2 (IT2). The diagram is established for= 1.9,d =
1.9801. As indicated by the dashed lines in Figure 3, these values allow
005k 1 the multiplicity of roots of the numerator and denominator of function
) p(x). The two arrows in the diagram refer to the path followed in Figure
steady states at p=0 2 to illustrate the transition from bistability with hysteresis to the
oL .. situation of nonconnected branches of coexisting steady states. The
0 2 4 6 8 10 vertical dashed line refers to the valuecafonsidered in Figure 6 below

d (the three roots of the numeratorp(k) marked by black dots in Figure

Figure 3. Domains (hatched areas) in which (A) the denominator or 5 are also obtained for this particular valuecyf

(B) the numerator of functiop(x) defined by eq 10 admits three real, 14
positive roots. When the denominator admits three such roots (upper b
panel), the curve yielding the steady stateas a function ofp will

admit three distinct horizontal asymptotes. This situation corresponds
to an irreversible transition of type 2 and is also a necessary but not
sufficient condition to observe nonconnected branches of coexisting
steady states. When the numerator admits three real positive roots for
p = 0 (lower panel), the system admits three distinct steady states

in p = 0. This condition corresponds to an irreversible transition of
type 1 and is also a necessary but not sufficient condition to observe
nonconnected branches of coexisting steady states. The situation of
nonconnected branches of coexisting steady states occurs when the pairs
of values &, b) and €, d) correspond to points located in the hatched
domains of panels A and B, respectively (see also Figure 4). The dashed
lines in panels A and B refer to the valuesafindd considered in
Figure 4.

N Denominator
Lo ‘

08|
o6 [
04

o2 |

Numerator and denominator roots

The horizontal and vertical arrows in the right part of Figure 0 0.05 0.1 015 0.2

4 correspond to the path followed in Figure 2 for switching bore
successively from bistability with hysteresis to an irreversible Figure 5. Roots of the denominator (solid curve) and of the numerator
transition of type 1 (upon decreasiogand then to the situation  (dotted curve) op(x) as a function of parametepsandc, respectively.

. . In the hatched area, the denominator admits three real positive roots.
of nqnconne_cted branches of steady states (u_pon |ncrela)_s!ng For the value ofc = 0.08 considered, the numerator also possesses
It is possible to understand in further detail the transitions three such roots, which are marked by black dots. To observe
sketched in the diagram of Figure 4 by plotting the roots of the nonconnected branches of coexisting steady states, the varaust
numerator and denominator of functipfx) as a function ot be in the range corresponding to the hatched domain. The vertical
andb, respectively. This is done in Figure 5, whexrendd dashed lines relate to th(_e thr_ee valuesbofonsidered in Figure 6.
have been fixed at the values considered in Figures 2 and 4. AsParametera andd are as in Figure 4.
can be expected from the above discussion, both the numeratoincreasing values db correspond to the vertical dashed lines
and the denominator qf(x) can display one or three roots as in Figure 5. The intersections of these lines with the S-shaped
parameters or b vary. The type of pattern of steady states curve yielding the roots of the denominatorgk) as a function
observed forx as a function of parametgr will depend not of b yield the position of the asymptotes »fas a function of
only on the number of roots admitted by the numerator and p.
denominator op(x) but also on the relative positions of these The different patterns obtained in this case are shown in
roots. Figure 6 where the steady-state value &f plotted as a function

To allow the occurrence of nonconnected branches, considerof p for the three values of parameteconsidered in Figure 5.
the case illustrated in Figure 5 in which we fixat the value We start with an irreversible transition of type 1, with the lower
0.08 (this value corresponds to the dashed vertical line in Figure branch of stable steady states approaching the unique asymptote.
4). The three roots of the numeratormk) corresponding to At the largest value ob, we still observe an irreversible
this value ofc are marked by black dots in Figure 5. We then transition of type 1, but now it is the upper branch of stable
progressively increase paramdbdrom a low initial value. The steady states that approaches the unique asymptote. Between
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12 Figure 7. Diagram showing the domains of nonconnected branches
1Lk of coexisting steady states and of more complex patterns of bistability
(shown in Figure 8) as a function of parametemndc. The diagram
m0-8F is established fod = 4.19. The value ofa is as in Figure 4. The
x OGE‘ occurrence of complex patterns of bistability associated with the
Il existence of two or more limit points (see Figure 8) is determined, as
0.4l for hysteresis, by finding the domain whea) admits multiple positive
extrema. The vertical dashed line refers to the valueadnsidered in
0.2} panel A of Figure 8.
T T e e 0 1o e done in Figure 5 for the patterns of Figure 6. Of particular
P interest is the pattern shown in panel C of Figure 8, where an
irreversible transition of type 1 is followed by bistability with
1.4 = hysteresis and by an irreversible transition of type 2 as the
arametep increases.
12 P P
1L Discussion
08f Bistability denotes the coexistence of two stable steady states
=" in a reaction system subjected to the same experimental
0.6 N conditions. The phenomenon is commonly associated with the
04f N capability of the system to switch back and forth between the
ook two distinct branches of stable steady states (connected by a
’ / branch of unstable steady states) upon the reversible variation
00 2 "1 é Js 1'0 1'2 ” of a control parameter in a range bounded by two limit points.

o A phenomenon of hysteresis results from the fact that the values
of the control parameter at which the transitions occur, which

Cobxisting steatly sates, strting from and fetLming to bistabity with <SP (0 the two limit points, are generaly different.
irreversible transition of ’type 1. The path followed corresponds to an I_n a previous pul_ollca_no’ﬁ we focus_ed on the situations in
increase in parametéralong the vertical dashed line shown in Figure Which one of the limit points becomes inaccessible to the system.

4. Thus,b = 0.02 for (A), 0.09 for (B), and 0.15 for (C). These values In such cases, the system is capable of jumping from one branch
correspond to the three vertical dashed lines in Figure 5, which permits of steady states to the other without being able to undergo the
us to determine the locations of the horizontal asymptote(s) with respectreverse transition; the transition between the two branches of
to the steady stateg in p = 0 (black dots). Parameteasandd are as  staple steady states has become irrever&iliere, we extended
in Figure 4. this analysis by proposing a model for the case where the two
these two extreme cases, we observe nonconnected branchemit points bounding the domain of bistability have both
The relative positions of the three branches of stable (or become inaccessible. Under such conditions, the three branches
unstable) steady states with respect to their associated asympftwo stable and one unstable) of steady states cease to be
totes depend on the value bf connected so that no transition between the stable branches can
Complex Patterns of Bistability. The possibility of observ- occur upon continuously varying the control parameter. Bi-
ing more complex patterns of transitions between multiple stable stability still exists, but the system may remain irreversibly
steady states is illustrated by the diagram of Figure 7 establishedrapped in any one of the two stable states if only the selected
as a function of parametebsandc for the same value dd as control parameter can change. Even when the branches of
in Figure 4 but for the higher valugé = 4.19. The diagram steady states are not connected, however, the transitions between
shows the same regions as in Figure 4, but besides the regiorthe stable steady states can still be achieved by applying
of nonconnected branches, we observe a domain of complexsuprathreshold perturbations in the concentrations of chemical
configurations of steady states. The latter configurations are intermediates.
illustrated in Figure 8 where different patterns observed are  Several models showing irreversible transitions between two
shown. The origin of such complex patterns of multiple steady stable steady states have been propé%ed,but the kinetics
states can be understood by resorting to a graphical representasf these systems is of a nonpolynomial nature and is based on
tion of the roots of the numerator and denominatop@j, as the assumption of irreversible chemical steps. To clarify the
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10 of irreversible transitions of types 1 and 2 as a function of a
A single parameter. To this end, we constructed a hybrid, two-
'_\ variable model by fusing the ILP model with the Sajilanodel
previously studied for bistability associated with hysteresis.
Besides nonconnected branches of steady states, this model can
display a wide variety of steady-state behavior, including
L monostability, bistability with hysteresis, and irreversible transi-
01— tions of type 1 or type 2. More complex configurations

involving a succession of irreversible transitions as a control
parameter is varied can also be observed in this model.

We have analyzed the conditions under which the situation

0.01 - " . . A
0.1 1 10 100 of nonconnected branches of steady states arises in this model
P as a function of one of the main control parameters. Our study
r . W r establishes that this phenomenon can occur in fully reversible
10 B | chemical reaction systems and is therefore not an artifact due
to the irreversible nature of the kinetic scheme considered.
\ Thermodynamic equilibrium corresponds to a point located

outside the domain of bistability. Thus, much as irreversible

transitions, the phenomenon of nonconnected branches is
1 ] possible in fully reversible chemical systems under nonequi-

librium conditions.

Bistability phenomena are by now a well-known manifesta-
\ tion of nonlinear kinetics in chemical systems. Hysteresis
0.1 , behavior associated with bistability has been described in a
0.001 001 01 1 10 100 number of theoretical or experimental studies, both in chetnftal
P and biochemicdi'8 systems. Less attention has been devoted

2 to the occurrence of irreversible transitions resulting in bistability
c without hysteresis. The phenomenon has been studied in detall
by Gray et ak®in combustion systems and by Hervagault et
al 242527who focused on cyclical enzymatic systems governed
! by (partially) irreversible kinetic laws and who investigated
experimentally the disappearance of limit points in such bistable
systems. With the exception of studies devoted to a cyclical
enzymatic system subjected to feedback regul&fidhgven
05} less attention has been paid so far to the situation of noncon-
ik nected branches of steady states. Further experimental studies
of bistability with irreversible transitions or nonconnected
0 > 4 & 8 10 branches are clearly needed in chemical and biochemical

P systems to better characterize the phenomenon and the condi-

Figure 8. Various types of complex patterns of bistability obtained in  tions under which it occurs.

the model. In (A) and (B), an irreversible transition of type 1 is followed Bistability without hysteresis could be of deep physiological
by an irreversible transition of type 2 as paramgtéicreases. In (C),  gjgnificance for the dynamics of biological systems, particularly
a full hysteresis loop separates two irreversible transitions of types 1 with respect to memory and differentiation. Once a system has

and 2, respectively. For (A), parameterandd are as in Figure . . .
= 0102 sz 0.0%5_ Alt(ho)ugh (A) and all previous figgres 7vl\:/’ere reached a certain steady state as a result of a change in a given

obtained forC, = 1 in eq 7, this parameter is equal to 0.0263 in (B) Control parameter, it remains trapped in this state regardless of

1.5

and 0.2693 in (C). Other parameter values are the following:a(B) any further change in the parameter value. Such irreversible
1.9,b=0.08,c=0.789,d = 0.355; (C)a= 1.9,b=0.1,c = 0.265, transitions between multiple steady states have been found in a
d=0.973. model for the C&'-induced self-activation of calmodulin kinase

conditions under which irreversible transitions occur when one through autophosphorylatid,as well as in a model for the
of the limit points of a bistable chemical system disappears, immune respons®. In the latter case, the authors thus could
we examined in our previous publicatfntwo theoretical describe the system'’s evolution toward a “paralyzed” state. The
models admitting a coexistence between two stable steady statessituation of bistability with nonconnected branches of steady
The two models, described by polynomial kinetics, are based States might be of further interest, since it allows a system to
on a sequence of reversible chemical reactions. This analysisPe trapped in any of two possible steady states and not just one
led us to suggest a classification of irreversible transitions Of these states as in the case of irreversible transitions of type
between two types, 1 and 2 (see Introduction). In the first 1 or type 2.
model, proposed by Schih! we showed that irreversible The finding that bistability without hysteresis arises in
transitions of type 1 but not of type 2 are possible. In the second modeld822.24.2531and experimens—2° involving cyclical en-
model, constructed to illustrate the phenomenon and referredzymatic systems suggests that a large class of biochemical
to as the ILP (infinite limit point) mode¥ irreversible transitions ~ processes might in principle give rise to the phenomenon. Many
of type 2 (but also of type 1 upon varying another parameter) key cellular processes are indeed regulated by the reversible
are obtained. covalent modification of proteins, e.g., phosphorylation by a
In the present study devoted to the case of nonconnectedprotein kinase and dephosphorylation by a phosphatase. Bi-
branches of steady states, we aimed at combining the occurrencstability may readily occur in such cyclical enzymatic systems
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when one of the modifying enzymes is controlled by positive
or negative feedback. The possibility therefore exists that
irreversible transitions between multiple steady states, as well

Guidi and Goldbeter

solutions. Thus, at equilibrium we have only the single
equilibrium solution.

as nonconnected branches of coexisting steady states, could plafReferences and Notes

a role in a variety of cellular regulatory processes.
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Appendix: Unicity of the Equilibrium State for the
Scheme Depicted by Reactions 3a3e

At equilibrium we have

_ k,lk,zk,sb _ k73k74r\ _ kfsksD
kloks kK, kK g
k3
X="A
K3
k1k3
= —k,lk,spA (A1)

With the definitions given in eqs 5 and 6, the equilibrium
conditions take the form

C,
C,— 1

C
a= b=Cc= Eld =Cx Cjz=pa (A2)
4

Substituting the values of the concentrations at equilibrium as
given by eq A2 in the steady-state equations (eq 8), we obtain

the eq A3:
_ 2
(x c, 1)(x +
(A3)

It is evident that the second factor cannot have real positive

C,bp
X
C.Cy+pC

b

Co+ P~ 1) _
CCp 4 pG
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